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The copper chalcogenide family consists of a relatively large
number of binary and ternary members which belong to two
general categories, those which are valence-precise and those
which are mixed-valent. The mixed-valent compounds have
been of particular interest and subject to numerous synthetic,
physical, and theoretical investigations because they exhibit
interesting properties, such as metallic conductivity, supercon-
ductivity,1 and charge-density waves.2 Examples include CuQ
(Q ) S, Se),3 CuS2,4 CuTe,5 Na3Cu4S4,6 ACu4Q3 (A ) K, Rb,
Cs; Q) S, Se),7 A3Cu8Q6 (A ) K, Rb, Cs; Q) S, Se),8 Cs2-
Cu5Se4,9 K2Cu5Te5,10 and A3Cu8Te10 (A ) Rb, Cs).11 In a few
instances, the mixed-valency coexists with the presence of
chalcogen-chalcogen bonds as, for example, in CuQ (Q) S,
Se), CuS2, K2Cu5Te5, and A3Cu8Te10. CuS is distinguished
among the binary (1:1) metal sulfides because of its unique
structure, which contains both monosulfides and disulfides, and
its mixed-valency. The latter is thought to be mostly associated
with partial oxidation of sulfide rather than the Cu+/2+ couple.
This occurs because the energies of the Cu+ 4d orbitals lie
slightly lower relative to those of the sulfide 3p orbitals. The
related valence-precise ternary compounds are semiconductors
such as NaCu5S3,12 ACuQ (A ) Na, K; Q ) S, Se, Te),13

ACu3Q2 (A ) Na, K),14 and K4Cu8Te11.15 In this communica-

tion, we report the synthesis, structure, and properties of a new
simple mixed-valent ternary copper phase, NaCu4S4, with a
novel two-dimensional structure related to that of CuS.
NaCu4S4 was synthesized from a mixed Na/Ba/S flux, which

was initially intended to stabilize quaternary Na/Ba/Cu/S
compounds. So far, we have not been able to synthesize it from
reactions of Cu withnNa2Sx (n ) 1-3, x ) 7-2.33) fluxes,
which generate only the known CuS. The structure of NaCu4S4
is a new two-dimensional Cu/S framework of trigonal symmetry
(see Figure 1).16 Anionic [Cu4(S2)(S)2]- layers, which contain
both S22- and S2-, alternate with charge-compensating Na+ ions.
The structure of the [Cu4(S2)(S)2]- slab is composed of a Cu2S2
layer of anti-GaS structure type, sandwiched between two BN-
type CuS layers. The connections are made via Cu-S bonds
involving metal atoms from the anti-GaS type layer and sulfur
atoms from the BN-type layers. The BN-type layers become
slightly puckered, and the deviation from planarity is attributed
to both ionic Na+sS2- interactions and Na+‚‚‚Cu+ repulsions.
This results in four-coordinated monosulfide atoms with an
unusual inverted (umbrella) tetrahedral geometry. The structure
of NaCu4S4 is akin to that of CuS itself, in that in the binary
solid, the anti-GaS type Cu2S2 layers alternate with the BN-
type CuS layers, forming an infinite stack along thec-axis. In
NaCu4S4, every other anti-GaS layer is missing and is replaced
by a layer of Na atoms. There are two crystallographically
independent Cu atoms in the structure: (a) Cu(1) is tetrahedrally
coordinated by one S(1)2- and three S(2)22- and (b) the three-
coordinated Cu(2) lies slightly above a trigonal planar environ-
ment of three S(1)2- ions. The Na-S distance is normal, at
2.927(4) Å. The S(2)-S(2) distance is slightly longer than a
typical S-S single bond in S22-, at 2.09(1) Å, but shorter than
the 2.15 Å found in CuS.
The formal oxidation states of NaCu4S4 do not balance unless

we invoke mixed-valency. If all monosulfides and disulfides
are considered as 2-, then the charges on the metal reduce to
Na(Cu+)2(Cu2+)(S2)S2. If, however, the metals are to be taken
as 1+, then either S2-/- or S22-/- mixed-valency is required,
which should manifest itself as holes in the sulfur-based valence
band. This situation is similar to that in CuS, where the formal
charge of Cu is 1+ and the average charge of S is 1-.3 In
CuS, the electron deficiency (holes) in S is partially relieved
by formation of S-S bonds (for two-thirds of the S atoms) and
partially delocalized through the S p-band to give the formalism
of (Cu+)3(S22-)(S-) or (Cu+)3(S2-)(S2-). Thus, CuS displays
ideal metallic behavior. In NaCu4S4, the [CuS] framework has
a 0.25- net charge, and the average charge of S is further
reduced to 1.25-, still short of 2- for a filled S2- p-band. The
addition of extra electrons in the sulfur bands of [CuS] does
not generate a valence-precise electronic structure. Instead, it
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leads to a less localized state (now only half of the sulfur atoms
form disulfides) but still with a considerable degree of delo-
calization. Further reduction of [CuS] by additional Na is
exemplified in the known compound Na3Cu4S4, where the
average charge of S is 1.75-, and no S-S bonds exist, leaving
the holes completely delocalized through the monosulfide
p-band.6

Electrical conductivity measurements show that Na3Cu4S4 is
a metallic material (see Figure 2). The thermoelectric power
is very small, at 3µV K-1, with a weak temperature dependence
between 85 and 225 K, confirming the p-type metallic character.
The NaCu4S4 displays temperature-independent Pauli paramag-
netism, with aøm value of 6.2× 10-5 emu mol-1.
NaCu4S4 joins the limited number of compounds built on the

[CuQ]n- (n < 1) stoichiometry, which are just Na3Cu4S4,
TlCu2Q2 (Q ) S, Se),17 and K2Cu5Te5.10 They can be viewed
as partially reduced states of CuQ, and they are all metals despite

their diverse structures. Although one might speculate on the
existence of a CDW instability, there has been no experimental
evidence that these metallic, low-dimensional solids are subject
to one.6c In a recent theoretical study, it was predicted that
reduction of K2Cu5Te5 (which has one hole in the conduction
band) by one electron would not yield a semiconductor; instead,
a structural distortion is anticipated for it to remain metallic.18

It appears that reduction of [CuQ] frameworks always reduces
dichalcogenide groups to monochalcogenides before filling the
holes in the conduction bands to generate semiconductors. Only
the completely reduced [CuQ]- frameworks, such as KCuS,
ACuQ,13 andR-/â-BaCu2S2,19 are semiconductors.
Considering the abundance of compounds in the ternary alkali

Cu chalcogenide system, it is remarkable that a new structure
type, a new electronic structure of [CuS]0.25-, and a new
composition of A/Cu/Q has been found. Among the plethora
of A/Cu/Q phases, the metallic NaCu4S4 is a noteworthy member
because of the simplicity of its structure and its close relationship
to the parent CuS.
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Figure 1. ORTEP representation and labeling scheme of (A) the packing diagram of NaCu4S4 and (B) one [Cu4S4]- layer viewed down the
c-axis. Selected bond distances [Å] and angles [deg]: Cu(1)-S(1), 2.335(6); Cu(1)-S(2), 2.332(3); Cu(2)-S(1), 2.242(2); S(2)-S(2), 2.09(1);
S(1)-Na, 2.927(4); Cu(2)-Na, 3.180(3); S(1)-Cu(1)-S(2), 108.5(1); S(2)-Cu(1)-S(2), 110.4(1), S(1)-Cu(2)-S(1), 117.36(9); Cu(1)-S(1)-
Cu(2), 80.5(2); Cu(2)-S(1)-Cu(2), 117.36(9); Cu(1)-S(2)-Cu(1), 110.4(1).

Figure 2. Four-probe electrical resistivity data as a function of
temperature for a single crystal of NaCu4S4.
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